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Abstract. Theconnectionbetweengroupactionsandanomaliesin gaugetheoriesis
studiedwithintheframeworkofa recentlyformulatedC-theory. Thisis a systematic
approachto deal with a theorywithsymmetriesandto obtain thereducedeffectivethe-
oryout ofi4 takinginto accountthestratificationwhicharisesnaturallybytheaction
ofa symmetrygroup C. Heretheextensionof someaspectsof the C-theory to the
infinite dimensionalcase,appropriatefor thediscussionofanomalies,hasbeendone.
Thisconceptis thenapplied to a simplemodelwhichcorrespondsto theAharonov-
Bohmeffect. Thestructureof theoccurringinfinitedimensionalobjects(manifolds)
is analyzedin greatdetail. Theevaluationof theparityanomalyis givenexplicitly.

1. INTRODUCTION

Therehasneverbeena doubtaboutthefundamentalrolesymmetriesareplaying in
investigationsconcerningthe interactionsof elementaryparticles.And still, thegeomet-

rical waysymmetriesareincorporatedinto themodemgaugetheoriesandthetopological
effectsthey leadto, were a realsurpriseto everyoneand remaintill now an astonishing

fact.
The chiral anomaliesare an especiallysuitableexampleof suchtopologicaleffects

symmetriesareproducing. Although theywere foundin specialone-loopFeynmandi-
agrams[1], it laterbecamemoreand moreclear that theseare essentiallytopological

effects [2] which havetheir sourcein the underlyinggaugesymmetryand which can
appearwheneverchiral fermionsarepresent,by the processof quantizationof a gauge
theory. Thesetopological effectsrefer oftento infinite dimensionalmanifolds,as e.g.
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theyare thespaceof gaugefields A (connections)and the gaugegroup c (the group
of all gaugetransformations).

Wehaveobviouslyto discussthe actionof agroup (finite or infinite dimensional)on

spaceswhicharenot finite-dimensional[3,4].It is remarkablethat suchspaces(~or the
spaceof all fields) possessin a naturalwayalsogeometricalstructure[3]. Thephysical
significanceof theabovestructuresis not at all cleartill now and may hide important
informationsaboutthenatureof the interactionsof theelementaryparticles.

The purposeof this paperis to contributeto the understandingof the anomaliesas

topologicaleffects inducedby symmetries.We shall achievethis by extendingsome

aspectsof a recently formulatedC-theory [5] to the infinite dimensionalcase(section
2). G-theory [5] is a systematicapproachto dealwith a theorywhich is definedon
a finite dimensionalmanifold U possessinga symmetrygiven by a group C. This
includestwo essentialsteps[5]: wefirst haveto considerthe stratification, that means

U is a disjoinedunionof fibre bundles,which arisesnaturally by the group action on a
finite dimensionalmanifold U. Thesecondstepis to obtaintheeffectivetheory, by the
processof geometricreduction,whichcorrespondstosomespaceM whichcanbelower

dimensionalthanthe spaceU we havestartedwith, as,for instance,in theKaluza-Klein
case.This canbe achievedby excludingthe degreesof freedomwhich dependon the
symmetry. In the presentpaperwe want to extendthe aboveformalism to the infinite

dimensionalcase.Here the spacewestart with, which correspondsto U, is the space
of gaugefields A. The relevantsymmetrygroup correspondingto C is the group of

gaugetransformationsg which actson A in a nontrivial way. Sowe obtainout of A
(which is an effectivespace),if we want to excludethe gaugedegreesof freedomby

performingthegeometricreduction,the spaceof the gaugeorbitsA/c. Thisspacehas

anontrivial topologicalstructure.Theeffectivetheorydefinedon it hasmanyinteresting
aspectsin connectionwith the questionof anomalies.The C-theory approachproves

to beespeciallyusefulto describeanomalies.

In particular,weshall showthat anomaliesarc obstructionsof thequantizationpro-
cedurewhich wemeetin theprocessof reductionwithin theC-thcoiy framework(sect.

3).
In addition,weshall demonstrateexplicitly the structureof theabovementionedin-

finite dimensionalspaces(A and~) in a particularsimple model which is relatedto
the Aharonov-Bohmeffect (sect. 4). In this specialmodel we shall also discussthe

questionof anomaliesfrom the pointof view of the C-theory [5]. We shall show ex-
plicitly thenon-existenceof theusualgaugeanomalies,as expected,and we shallshow

theexistenceandtheevaluationof theparity anomaly(sect.5).

Themainpurposeof thesections4 and5 istoillustrateinanexamplechosenas simple
aspossiblesomeof themainfeaturesofthe C-theoryapproach.Wehaveunavoidablyto
dealwith infinite dimensionalspaces.In ouropinion, considerationsconcerninginfinite
dimensionalspaceswill entermoreand moreinto thephenomenologicalinvestigations
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in future. In orderto facilitate the insight into this field for morephenomenologically

orientedscientists,wehavebeenquite explicit in thetreatmentof theabovementioned
sections4 and5 whichcanbereadparallelyto if notcompletelyindependentlyby of the
precedingsections.

2. G-THEORY CONCEPT AND GAUGE THEORY

2.1. Thegaugetheory

An anomalyisconnectedwithanunexpectedbehaviourwhenfermionsarecoupledto

gaugebosons.We thereforeconsidergaugefields correspondingto the compactgroup
C andfermionson a compactRiemannianspace M. We are working in the Euclid-
ian regimeand wehaveof courseassumedthat thespaceM canpossessspinorfields

(M mustbea spinmanifold).Themostnaturaldescriptionof gaugefields is given by
theconnectionA on a principal C-bundleP (locally trivial, i.e. P = M~C). The
fermionstP aredescribedby a sectionin a vectorbundle W which is atensorproduct
bundle W := F® E of thespinorvectorbundle F = SxSpin ~ with S thespin(dim

M) principalbundle (locally S = M ~ Spin),~ thecorrespondingClifford module
and the vectorbundle E P XG V with V a representationspaceof thestructure
group C. Thespinconnectionis givenas a fixed backgroundfield. In thefollowing we

shallconsider,without lossof generality,with given M andC, only onefixed principal
bundle P ormoreprecisely,oneisomorphismclassof principal C-bundles.The<<full>>
configurationspaceof ourproblemis given by thesetof all connectionsA on P and
all sectionsin W. We shallcall it for goodreasonsthepreconfigurationspace H

H = A x H = {(A , ‘P)IA a connectionon P, ‘F a section in W}.

All function spaceshaveto be completedto appropriateSobolevspaces. This is

necessary,sincewe needtheir Hubertspacestructure. The dynamicsof our theory is
givenby the action

(I) S(A,’F)=SA+Sw

with

SA=flFI2andSq, f~P~A’F

F is thecurvatureform and .V)A is theDiracoperator.

Oursystemat leastwill havethe gaugeinvariancedescribedby thegaugegroup g.
Thatistheverticalautomorphismsof P, g = AutMP[ 6], asubgroupofthe Aut P, the
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subgroupof diffeomorphismson P which commutewith theactionof thegroupaction

C on P. We shall in addition assumetheexistenceof a largersymmetrycc ~c <
AutP). Sincewe shallnot considergravitationas a dynamicaltheory, the metric gM

of our<<space-time>>M will appearasabackgroundfield in theaction. Soin ourtheory

we shallconsiderthe metric g~as an absoluteelement. ~ shouldbe the subgroupin
Aut P whichpreserves(afterprojection)themetric 9M ~ induceson M the isometry

group ~ andwe have ~ c/c.
In thefollowingwe shall first restrictourselvestothe gaugegroup c. Theactionof

c on H is given by

I-I xc—uH
((A,’F),g) I. (A- g,g~. ‘F)

with A.g := g~Ag+g~dgand (g’f’)(m) := p(~(m))’F(m),mEM with p the
representationof C in V,p a sectionin the C-bundleM~Cwith innergroup action
insteadof theright action asin P, correspondingto theelementp of the gaugegroup

c. The invarianceof the actioncannow bedescribedby

S((A,’F)g) = S(A,”F).

2.2. C-theory

As we haveseen,the spaceH is a C-spaceand our theory is assumedto be C -

invariant. Fromtheleadingprincipleof the C-theory[5] we may deducethat the above

theorycanbereducedwithout anyloss of informationto aneffectivetheory at the level

of theorbit spaceH/u. To bemoreprecise,we needsomemorepreparation.Suppose

a theorydescribedby the map

f:X~Y

where X is a right and Y a left C-space.Thereis a natural C-action on the space

Map(X,Y)

C x Map(X,Y) -+ Map(X,Y)

givenby

(g,f) F-~gf(xg)~: (gf)(z).

If we considerthosemaps f wherethe C-actionis trivial (i.e. gf = f), therearc
two possibilities:
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(i) Invarianceortheequivariancepropertyif

J(~g)= g~f(x) =~. gJ = J (the invariance)

(ii) Strict invarianceif C is acting on Y trivially

f(zg)=f(z) =~‘.gff.

Theeffectivetheoryis definedafterthereductionof theequivariantmap

f:X—~Y

to themap

f:X/C~ XxY

with f definedby

f(m) : [z,f(z)] with m= ir(z)

and

~r:X—~X/C.

If werestrictourselvesto afixed stratumin X, thereis aoneto onecorrespondence

betweenf and f. Thisprocedureis calledgeometricalreduction. In thecaseof strict

invariance(ii), J containsno informationrelatedto C arid f canbeviewedasa map

f : X/C —* Y, too. In the case(i), someinformation of C is containedin f which
afterreducingwill appearin theorbit space~.. Applyingthis ideato gaugetheories,

we can reducethe full preconfigurationspace H to the spaceof gaugeinequivalent
configurationsii = H /~. Forthis reasonwecall H thepreconfigurationspace.Since
gaugeequivalentfield configurationsareindistinguishable,weexpectnophysicaleffects

of the symmetryin thereducedtheory. Since the action S(A, ‘F) is gaugeinvariant,
this is exactlytheresultweobtainwhenweapplythe C-theoryconceptto the case(ii).
In classicalphysics, this canbe done without further problems. In quantumphysics,
the situation may changedrastically and we may meetthe anomaliesas obstructions
to the quantizationin the processof applying the C-theoryconcept.The reductionof
thepreconfigurationspace H leadsto the properconfigurationspace 7-C = H /~. In

quantumphysics sucha reductionmay be inconsistentwith the quantizationprocedure

in thesensethat this proceduremay lead to an <<effective>> actionwhich is not anymore
strictlyinvariant. In this case,we havea gaugeanomaly.



242 A. HEILETAL.

If our theoryis strictly invariant on a largergroup g(c < ~) and if thefirst step

leadsto 7-C = H ic in a consistentway with quantization(no gaugeanomalies),then
we can go to thesecondstepandtry to reduceii furtherby <<dividing>> with thegroup

~. If the second step is not consistent with quantization, thenwehaveC-anomaly.As
weconsiderthe reductionformalism as particularlyimportantfor theunderstandingof
anomalies,weshall proceedhere,similarly to the finite dimensionalease[5], by gener-

alizing it in orderto obtain the effective theory and the structureof thecorresponding
orbit space7-C.

Ouraim is to reducethepreconfIgurationspaceH by theactionof the gaugegroup

c. As afirst step,it isusefultoparametrizetheelementsof H by thegaugeinequivalent
gaugefields. Sowehavethediagram

H=A xH~÷ 7-C

/ /

7r~~

where Q : H —* 7-C is a projection given by

(A,’I’) H-~ [A,P] E 7-C

and

A —~ :=

A ‘-+ [A].

Theprojection ir71 : 7-C —* Jvt is definedby

0 Q =

So the set ~ ([A]) consistsof thoseelementsin 1-C which are parametrizedby all
gaugeequivalentconnections[A] E /vt. In general, M is a stratified set. The strati-

fication of Jvt is given by theoccurringorbit typesof c in A. Theseorbit typesare
classifiedby theoccurring stability groups. So wehave,similarly to the finite dimen-
sionalcase,[5,7] thefollowing result [8]

A~u A,
eel

I1T~4

.M~U 14,
iEl

where I is a partialorderedindexingsetand

c/f1 —‘ A, —,
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is a smoothfibre bundlewith fibre ~/J1, J~< C is theorbit type of A1, that means

thestability groupsin A, areconjugateto J1. Thequestionaboutthestructureof this

fibration arisesnaturally

--4/4

The orbit bundle A1 canberegardedastheassociatedbundle

A, = A
1’ XN ~/J,

whereA1~= {A E A
1 I stability group of A is J~} and N, = N( f1) /J1,N( J1) isthe

normalizer of 11 in c. Starting with H = A x H, we have

H = u(A
1’ xN ~/f

1 Xc H.

<<Dividing>> c yields

7-C = u1(A
1~XN. c/J

1 Xc H

since A
1’ is a right N,-space, Q/f, a left N

1 and a right C-spaceand H a left

C-space,wehave

fl = UJA
1~XN, (c/f

1 Xc H)

[7] andwith the isomorphism

(c/f1 Xc H) ~‘ H/f1

given by the maps J1h —, [J1e,hi and [J1g,h] —i J1gh which are inverseto each

other,weobtain

1-C ~ U A

1IXN H/J
1’~’ U fl1

lEl ‘ IEI

I ~ I,r,~i
M ~u M~~’ U 14,

lel

So 7-C is theunion of fibre bundles 7-1~

H/f1 —~ 7-C1 —4
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with the fibre H/f1 and the structuregroup N1 = N(f1)/J1. (1) The last step is to
divide C outof 7-C if wehaveanevenlargersymmetrygroup ~. Thiscanbedonein

the samemanneras in the first step. Thenthe reducedfunction S : H/~—* 1k will

containthedynamicsof our theory (2). Thiscompletesthereductionof our theoryon

theclassicallevel.

3. ANOMALIES AND C-THEORY

In orderto dealwith interactionsof elementaryparticles,we haveto leave the clas-
sicaltheory. A quantizationprocedureisnecessaryand we shallproceedwith Feynman

path integral formalism. This is not at all a solved problem and it may very well be
that the interpretation of anomalies [9] depends crucially on the solution of the prob-
lem of quantization.In spiteof this,weshallhere takethe usualpathof Feynmanpath

quantizationsincethis seemsatpresentto be physicallythemostappropriateapproach.
We startwith the propagatorfunctional

(2) Z:AxH—,ff

givenby

Z = exp(SA+ S~)

and wehaveto perform the functionalintegration,assumingtheexistenceof thecorre-
spondingappropriatemeasureweneed

fVAD’PV’I’

The first step is the Berezin integrationoverthespaceof fermions. This leadsto an

effectivepropagatorfunctional Z(A) whichis proportionaltothedeterminantdet ~

7~A

det ~Z)A: A —* (F

of the Dirac operator. If we start with chiral ferrnions,weobtainthechiraldeterminant.
The determinant can be defined only after one has chosen a regularization and we may

think e.g. of the (-regularizationtechnique.
The point is that the section

Z(A) := expSA - det ~7~A

may not be strictly invariant (ii) (3) underthe action of the relevantgroup (but only

(1) This hasto bedonewith respectto theSobolevclassesandSobolevcompletion.

(2) Tngeneral,theorbit spaceH/g is not asmoothmanifold [5, 7].

(3) Seethenotationin subsection2.2.
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equivariantor invariant(i)) for any possibleregularization wemay think of. This has
first topologicalconsequencesfor ourreduction proceduresincewecannothave simply
the reduction of Z to a function Z’:

—‘(F.

In this case, we obtain from the reduction a sectionin a non-trivial (F -line bundle,
the determinant bundle Det’. But this topologicaleffectof the reduction has theconse-
quence that wehave to integratea sectionin a twistedbundle.Sincethis isnot possible,
wecan.notperform thequa.ntization.So,aswesee,havi.nglost thestrict invarianceafter
the integration over the fermions, we cannotproceedwith thequantization.This is what
wecall the gaugeanomaly.Stated differently, wemay also say that, in thiscase,because

of the quantization, we cannot performthe reduction, and the reduction is only possible
if we have the strict invariance property.

Since complex line bundles are classified by the first Chemclass c1 E H
2(M,Z),

gauge anomalies are related to the topology of 14 = A/c. Since A is topologically

trivial, all nontrivial effects are induced by c and so have their origin in the symmetry.

The situation may be more complicated than described above since in general the space
A/c may not be a smooth manifold. In this case, the stratification, as described in
subsection 2.2., has to be considered in more detail.

Our procedure canbe simplified by regarding a subgroup of g which is acting freely
on A. This is the pointed gauge group c~[3, 8], an infinite dimensional subgroup of c,
with the property that it is the identity on the fibre over a fixed point z

0(x0 E M). If
we <<divide out>> the c, only a finite dimensional group is left and we have in particular

cic C, the structure group. Since the action of Q* on A is free, wemay consider

A as a principal bundle

c~~A /4*
Soweobtain by <<division>> with c

t from the section Z

Z:A-+AX(F
(3) -

Ai—~(A,Z(A))

in general, the section Z’ in thedeterminant bundle

:=Det*

(4)

[A] F-* [A,Z(A)]

If Det* is trivial, we may further <<divide>> with C and weobtain

(5) Z’ : A/~ ~ := Det’
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If Det’ is trivial, too, then Z’ is a function

14 —‘ (F

and we have no gaugeanomalies. This meansthat the Z we startedwith is strictly

invariant under the action of the gaugegroup c. Therefore, according to subsection
2.2., the reduction procedure leads to a function on the orbit space 14 = A/c. In this

case we have no gauge anomalies.
As mentioned, the space /4, being an orbit space, is in general not a smooth mani-

fold. 14 is a smoothmanifold if e.g. the group c (orG) is actingsimply on A. This
is the casewith the examplewe shalldiscussin the next section,where C is acting
trivially on A.

Assuming now thenon-existenceof the gaugeanomaly,we cantry to continue the
reduction procedure: If Z’ is not strictly invariant under the action of C, then by <<di-

viding>> weobtain a section Z

(6)

Our theory contains C-anomalies and hence we stop with reduction at the level of A/a.
Wehave seen that starting with a strictly invariant (ii) theory, the quantization proce-

durecanleadto an effectivetheorywhich doesnotpossessthis propertyanymore. At

this level, we have to stop also the reduction procedure. Theanomaliesmaytherefore

beconsideredasobstructionsofthequantizationto the reductionprocedure.
The C-theory is a schemein which it is possibleto describethe various kindsof

anomalies. What we need in addition is a way to compute the group actions on Det.

This can be done with the different kinds of the Atiyah-Singer theorem.
Before coming to our special example, we would like to turn back to the question

of smoothness of the orbit space M. If we want to maintain smoothness in the general
case, too, we have to consider the stratification and to restrict ourselves to the principal

orbit bundle [5, 7] A (4)

Its structuregroup ~ = N( f) /f is given by the quotientof the stability group f
andthenormalizerN(f) of f in thegaugegroup c. 1.4 isnow a smoothmanifold.
Usingthe resultof subsection2.2., we obtain from the restrictionof 2 to A

(7) Z’ : A/~ ~ X(F/f

(4) This correspondsto theirreducibleconnectionson P.
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This resultcorrespondsto eq. (4). From this we canproceedto further reduction.

An interpretation of the remaining strata with lower dimensionsseemsnot possibleat
present.

In the next sections, we shall study the spaces A,c, A/c,A/~in an explicit model.
Weshallcalculatedet PA and exhibit the c action on (F. Every step in the calculation

will bedoneexplicitly.

4. THE AHARONOV-BOHM CASE

Aphysicalexamplewith anon-trivial (5) topologicalstructureistheAharonov-Bohm

effect [10]. This is simpleenoughto allow explicit studiesof an infinite dimensional
space,like thespaceof gaugefields A and the gaugegroup c. Weshall thereforebe

ableto demonstrateexplicitlymostof the structuresdiscussedin theprevioussections.
We considerthis to bean importanttask, too, sinceit seemsto us that this is the best
way to get some feeling about the <<abstract>>objects we are dealing with. They are

neverthelessdirectly relatedto the physicaldataof the Aharonov-Bohmeffect at the
classical level of the theory. Only in the quantized version of the model, which we shall

discuss in the next section, we will not be anymore directly in the physical situation,
sincewe shallnot incorporatethe timedependence.

In theAharonov-Bohmeffectthespaceoutsideof the solenoidis curvaturefree(the

field strengthF is zero) and we can have only flat, but not trivial connections. We

thereforeconsidera time-independentU( 1) gaugetheoryover the one-dimensional

sphereS1- So we havea U( 1) principalbundleover ~I• As wehavefixed the basis
manifold S’ and the structure group U( 1), there exists only one such bundle (up to
isomorphism), the trivial one (the torus T = S1 X U( I))

U(l) -+T—’81.

Futhermore, as mentioned, all possible connections must be flat, since the field

strength is a 2-form over g1, whichvanishesby definition.
So in this case our preconfiguration space H will have one component only andwill

be of the form

H=AXH.

A is the affine spaceof connectionson thetorus T and H is the spaceof functions
‘P : S~—> (F - Wewill do our study in two steps. Wewill first consider A only, in this
section, and then we will add H, in the next section.

(5) This stemsfrom thefact that in theAharonov-Bohmeffectwe haveto excludethe solenoid.
This leadsto our S1-spacewhichhasthenon-trivial cohomologygivenby H1 (S’, Z).
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4.1. The spaceA of connections(gaugefields) on T

The connectionsA on T are Lie (U(l)) = jR-valued 1-formswhich havethe

propertyof strict verticality, i.e. for A E A

(8) A<~>= ~

where ~ is thefundamentalvectorfield correspondingto ~ . E Lie(U( 1)).
Since T is a trivial bundlewe canproject A onto the basespacewhenwe have

chosena referenceconnection.We fix this referenceconnectionto bethe trivial connec-
tion which is the Maurer Cartanform 0 in U( I), pulled backto T via the projection
u: 51 X U(l) —‘ U(l)

Aref = zi * 6.

All other connections are flat butnot trivial. Nowwe choose a coordinate system of

T as {z, x} (seefig. 1). In this coordinatesystema connectionon T canbe written
as

A A(z)dz+ id~.

In our conventionthereferenceconnectionAref will be

Aref = id X (Aref (x) = 0).

The space A of connectionsis an affine space. We cancheckthat only a convex

combinationM1 + (1 — t) A2 of two connections A1,A2 is a connection, but not the
sum or the difference because the property of strict verticality (8) will not be fulfilled.
If we specify a reference connection, it is clear that A is characterizedby the 1-form

A(z)dx in S
1, and sowehavean isomorphismto a vectorspaceA

0

A0 ~~(S
1,iR) ~~1(5I)

where the subscript denotes the dependence on the reference connection.

Inourcase,A
0 isfurtherisomorphictothefunctionspaceC°°(5

1). Sincedim g1

= 1, wehave

(9) Qt(gl) ~ Q°(S1)= COO(Sl).

A connectionon a principal fibre bundle meansin geometricalterms the splitting

T~P= H~® 1/,,, of the tangentspacein ahorizontal H~and a vertical subspaceVP
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~xut~xcjrPHP

Fig. 1. a) Total spaceT g1 x U( 1) ofthe U( 1) principal bundle. (xx) arecoordinates
of basespaceand fibre. An assignmentof ahorizontal subspaceH~of tangentspaceT~P
in everypoint p e P correspondsto a connectionon P. b) The horizontal curve is tangent
to the horizontal spaces.The curve is not A itself, it is a code for A. The defectangle c~
parametrizes in our casethe gauge inequivalentconnections.

(seefig. 1). Thepictureshowstheassignmentof the horizontalspacein everypointof

T. A horizontalcurvewill possiblywind aroundthetorus n timesandwill in general
notcloseby an angleof o~E [0 , 2 -ir[. As we will seelater,this angleparametrizesthe

gaugeinequivalentconnectionson T.

4.2. The gaugegroup c
The first stephas beendone. We know the bundle T and the affine spaceof con-

nections A. Now wewant to considerthe gaugegroup c. Before investigating c, we
shall give somedefinitions. The gaugegroup ccan be viewed as the spaceof U( 1)
equivariantmaps[11]

c~:T—*U(l),
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X U(l) X U(l)

2TC~7r,7/7~I 2~

0 0 ~S1~
0 2itx 0 2~x

a) b)

X U(l) X U()I

Fig. 2. Graphsof gaugetransformationsg E C~(S1U(1)) a) g elementof thefull gauge
group c. b) g elementof thecomponentof theidentity c

0 in g. g may notwind around
the torus. c) g elementof the pointed gaugegroup c. For all g its value is fixed at one
point, here g(O) = e.g. may wind aroundthe torus. d) g e ~ .g has the restrictionsof b)
and c).

where (gi .g2)(t) = g1([) .g2(t),t ET givcsthegroupstruclure.

So we have

Oequ : T .‘ U( 1)

(s,u)
9equ(8, u) = 9cqu((s, e) . u)

= Int(u1)g(s) = u~g(s)zL g(s)

where g( s) := gcqu(~’e), andwhere g is actuallythemap (seeFig. 2a)

g : S1 U(l)

and c C’~’°(S’,U(l)).This is an infinite dimensionalLie group [3]. We want to

pointout that ~ is anAbeliangroupheresince U( 1) is Abelian. TheLie algebraof c
is givenby

Lie(g) = {YIY : S1 iR} ~ C~(S’,iR).
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In our case it turns out that we have the vector space isomorphism

A0 ~Lie(g).

We havetheexponentialmap [11]

Exp : Lie(g) —# g

definedby

Exp(Y)(s) = expY(s)

where s ~ S
1, and with

cxp : Lie(U(1)) U(l).

Every g~E g
0, which aremaps S

1 —> U( 1) S1 that arehomotopic to the

constantmap and hencein the componentof the identity in c, canbe expressedby

Y E Lie(g) with the help of Exp

= Exp Y.

Thereit is essentialthat g~E g
0 is anelementof thezeroclassin ~r

1(U( 1)). Then

for every Y E Lie(g) thereexistsa lift to Oo E C
0

S’ ~> U(l)

N:
Every map p : ~1 U( I) which is an elementof the k-class in ir

1( U( 1)) hasthe

canonicalform

p =

where g
0 is elementof the o-classand

9k a specificrepresentativeof the k-classin

~r’(U( 1)), e.g. gk(~) =

8k From this follows that c has Z componentslabelledby
k E ir

1(U( 1)), and every g ~ g canbe written as

g(s) =(expY(s))sk kEitt(U(l)) =7, YeLie(c) ~C~(S1).
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We have theproductstructure(seeFig. 2a,b)

c = g0 > z

where Z labelsthemaps g E c givenby

g(s)=sk kEZ.

Wewant to examine c a bit closer. The component of the identityof C0~(Sl,U( 1))

isdenotedby C0~(5
1, U( 1)). Ifwe look attheconstantmappingp E C

000(S
1, U( 1)),

g=Expr rEC
0°°(S

1,ilR)

r: S1 —~ ilR = U( 1)

s—~ir
0,r0constant,

we find, whendenotingthe setof constantmaps r E C~(51 ilR) by ilR, that ExpilR

= U( I) (the structuregroup) is a subgroupof thegaugegroup c = C°°(81, U( 1)).
In general,whetherc is connectedornot dependson H

1 ( M, Z) and the topology

of thestructuregroup C. In theAharonov-Bohmcase,c has Z componentsbecause

H1 (gl 2) = 2. We seethat in the electromagneticcasethe question,whetherc is
connectedor not, dependson the topologyof thebasemanifold M. This is different

from the case of an SU(2) gaugetheoryon 54~ In this case the gauge group is not

connected, too, but the reason for this originates in the topology of SU(2) [12]. Now

wecango furtherand studythe full symmetrygroup c (subsect.2.1.). We first study

AutP, of which ~ will be asubgroup. AutP consistsof diffeomorphismsp of P,

~: ~1 x U( 1) ~I x U( I)

with thepropertyof the U( 1)-equivariance

= ~(s,u) p.

\Vhen P is a trivial bundleasin ourcase,Aut P canbe represented[6] asa semidi-
rectproductof Aut M~ = c and Diff M, i.e. therearehomorphismsa : c —* Aut P

and ‘y : DiffM —f P, so that for every ~ E AutP thereare p e g, ~ E DiffM

with ~ = a(g) - ‘~(~ Wewrite Aut P = c 0 Diff M. In our example, we consider
the subgroup ~ of Diff g1 whichkeeps our metric on S1 invariant. On ~1 wehave
a constantmetric 9~i,

TS1 x TS1 —~ JR
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(X,Y) i—~X . Y scalarproduct in TS’ L ~‘ lR~

(X,Y) ETS’IX

All isometricsof S1 are givenby
(i) spacereflection P S1 —~S1

s—~ s=e’~ES1
or x—’—x

(ii) spacetranslation T gl .. S1
s~~,e~&saE[0,21r]

or x —* x+ c~.Hence C= Z
2 x S

1 andourfull symmetry

groupis g= go(z
2 x gI)

4.3. The space )vt of gaugeinequivalentconnectionson T and its stratification

Our next task will be to determinethe quotient spaceA/~’=: /.4 whichis thetrue
configurationspaceof our theory. Thespace 1.4 is the set of equivalenceclasses[A]

givenby

A’ A A’ = A . g = A + g~dg.

With A E A0 and g E C00(S~, U( 1)) wecanproceedin two steps.Because
of g = g0 x Z and thecommutativityof c, wecanhave

1.4 = A/~= A/(c0 ~ Z) = (A/G0)/Z.

So we first wantto determineA/Q0 whichmeansthat we havethe restrictedequiva-
lenceclass [A]0.

A’ ~ A ~ A’ = A + g~’d g0with

9o ec0.
This g~canbewritten as

9o = Exp Y with Y E C°°(S
1 , iR)

and so

(10) A’~As~A’=A+dY.

Since g1 is outsideof thesolenoid,we havezero field strength(F = 0), sothat
d A = F = 0. A is a closed I-form in S~and the above relation(10) is similarto the
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onein the deRahmcohomology.The elements[A]0 of the restricted class (‘—i) are

thereforeexactlythe elementsof the first de Rahmcohomologyclass H’(S
1 , ilR). It

isknownthat H1(51,iR) = H°(51,ilR) asmaybeclearfrom(9), and so

A/c
0 = H°(5

1,ilR).

iR) is the space of the constant functions in 81, sowehaveH°(S1, IR) JR

and

A/c
0 JR.

Wehave one more <<division>> and we obtain

A/~= (A/c0)/z = R/Z =

The sameresultcanbeobtainedby a calculation.Every A E A0 canbe viewedas

a function A(s) with A= A(s)dx

A(s) : Si 1JR

andcanbe expressedin a Fourierseries

A(s) = i ~(a~ cosnz+ b~sin n~)

5 = e~X,xE [O,2sr],a~,b~ E JR

and every p E C0c(SI,U(I)) canbeexpressedas

p(s) = exp i [~(ancos n~+ ~ sin n~)+ kit]

k E ~ ER.

Insertingthis in

A’ A+ g’dg

gives

a’ a0 + k
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where a’, a0 E JR and k E Z sincea~,~i
3,acanbe chosenarbitrarily. So weobtain

asa setof equivalenceclasses,hence

= 51

In [5] the aim of C-theorieswas to reducethedimensionsof a Kaluza-Kleintheory

from n to 4. Here,in this explicit example,wehavefound a drasticreductionof an

oo-dimensionalproblemto a one-dimensionalproblemon S1. This is unfortunately
not true in general. The reasonwhy 14 turns out to be a manifold in this case, is
determinedby thestratificationwhichwe will discussnext.

The stratification of A by c is given by the orderedsetof theoccurringstability

groups J. Every J is conjugateto a closed subgroup of the structuregroup C [7, 8].

This is completely analogous to thesituationin [5]. Since C = U( 1), the only possible

subgroups are Z, Z,~and U( 1). Let usstudy the stability group ~A h E ~A iff:

A = A. h.

This implies that

A= A+ h~dh

which gives the condition on h E c to be

h~dh= 0.

Weseeimmediatelythat wehaveonly onestratumsincetheconditionisindependent
of A E A. With h(s) = ExpY(s)sIc and Y(s) in coordinates

Y(s) = ia
0 + i~(a~cosnx+b~sinnx)

we find that

h~dh= Y’(x)dx + kdz = 0 =~Y’(x) = —k

and

~(—a~nsin nit + bnncOsnit) = —k.

This implies a~= = k = OVn / 0 but a0 arbitrary. So we find k = 0 and

Y(s) = ia0 ER < C00(S

1,ilR) ~

hE J hE U(l) <C~(S’,U(l)).
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This gives

~A U(l)for allA~A

Sowe have found that all elementsof A are fixed points of U( 1), the constantgauge
tranformation.Wecan now proceed to determine the orbit bundle structure of A.

What structuredoesA have?Similarto thefinite dimensionalcase,A is abundle

overA/~with fibre ~/J[ 7,9]. It is easyto seethat

g= c x U(l)

wherec~= {g E ~Ig(I) = 1, 1 E Si, I E U( 1)}, theso-calledpointedgaugegroup,
i.e. thegaugetransformationswhich leavethe fibre overone point in T fixed (Fig. 2c,

d). So

c/J=g/U(l) g*. C~0(Si,U(l)).

A is a bundlewith fibre c. A is a ~ principalbundleover 14 sincec* actsfreely
on A[ 3]. In thecasewe arediscussingc* will bedenotedasC~’°(~1 , U( I)) as well.

4.4. The principal bundle A

We haveseenthat A is a principal fibre bundle

g*A*Jv1

We canask whetherit is trivial ornot. If wesupposethat it is trivial, it allows a global

section o

~ IT

M-+A--~Jvt

with it o a = id. The application of the homotopy functor would yieald

x~(M)~it~(A) ~it,(M)

with iç o a~= id. But 14 S1 arid A is anaffine space,so wehave

= {~else } and it~(A)= OVk >0.

For k= 1 wewouldhave

Z ~0 ~Z with a, o = id
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which is a contradiction. This showsthat A is a twisted bundle and therefore there

existsno global section.

This is known in physicsas the Gribov ambiguity [3]. Since A is contractibleanda

g*..bundle it is universal,following a propositionof [13]. A universalbundlehelps to

classifythe isomorphismclassesof all g*~bund1es.14 = A/a” is a classifyingspace

Bc~of c*~bundles.On theotherhand,1.4 ~ S~and is a classifyingspaceBZ of
Z-bundleswherewehavetheuniversalZ-principal bundle

Z -~ JR —p

Sowehave

c’—~ A JR

.1
Bç~ ~ BZ

In this example, we are in the lucky situation that we can reduce our infinite di-
mensionalprincipalbundle to a finite dimensionalone: the universalcoveringbundle
JR - $1 of ~1 Thereductionispossibleif thereisabundlemorphismfromthebundle

JR to thebundle A with the following properties:Themorphismis the identityon the
basespaceand the mappingbetweenthe structuregroupsis an injection [14]. This is

clearly the case. The information we need about A is alreadycontainedin the bundle
Z .—~ JR .—* S~. To get some information about how A is twisted,wehaveto study
only the Z -bundle JR. Thisbundleis given by theprojection

JR —~

a ~ exp 2iriâ.

Takethe covering D±of S’ with the intersectionD1 fl D = g0 where g°=

Z
2 = = { — I, I }. (Actually weshouldtakean opencoveringwithopenintersections.)

BundlechartscI~~ are givenby

= (it; ~) : exp~(D~)—* D~x Z.

Fora=a+kwithaER,kEZ is

~~(a)=k for aE[0,~-]

~(~)=k for aE[1,1]
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K + 3/2~>~~~ ~ K+

K + I /2 C K

D~xZ

-~lcS4 1 ~+lES° -
~ o x ~

Fig. 3. The universalcoveringbundle Z —+ R-~+S’and a bundle atlas 1 =

(D~D } is a coveringof S with D + n D — = 5°= {— 1,1), more precisely if openneigh-
bourhoods are taken. cb±= (w,~) : l(D±—~ D~x Z are the bundle maps and
define a trivialisation. The transition functions ‘y D~fl D— —+ Z connectthe different
trivialisation on the covers D pm~

The transition function ‘y is given by

~y:S0 —~.Z

with

= 0; ‘~(I)= 1.

Forinstancep1(0) = 0 and ~o4(l/2) = 0, so we havefor a with ir(a) E 8°

~(a) = ~(a) + y(ir(â))

= ~o(0) + ‘y(ir(O)) = —l + ‘i(l)

~( ~) = ~( ~) + ~(it( ~)) = 0 +

This givesa bundleatlas,we havethe well known picture, (Fig. 3). How does the

bundleatlaslook for thebundle A?We have the following charts:

= (it,~o±) : irl(D±) —~ D±x
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For A = a + dY E A with a is a constant valued 1-form with values
a = a + k E R, k E Z thecartsçb~aregiven by

[~(A)](s) = exp(Y0(s) —Y0(l)) .3~±

with

k~=k foraE[0,~-]

k_=k foraE[~-,1]

Thetransitionfunction 5°—+ ~

t is givenwith thehelp of ‘y: ~O Z

‘y(l)=l; ‘y(—l)=O.

So we obtain for A with ir(A) ~ 50

= [~_(A)](s)
3i(w(A))

4.5. The space14 = 14/C

In order to determine the quotient space /4 = 1.4/&, we first have to know the

action of the group = Z2 x81 onthespaceof connectionsA . From this information

we can then infer the actionof & on thespaceof the gaugeinequivalentconnections

/4 = 1.4/c.
The two factors of C correspondto the reflections(parity) 1’ = Z2 and to the

translations y = ~1 of thespace seesubsection4.2.). The parity transformation

P E P is given by

(II) P : s—~ s~’= ~ (complexconjugation)

and in coordinatess = e
2~~xby

it —.4 = —a;.

This induces for the parity transformation of A (in coordinates A = A( a;) d it):

P : A —i A1’ = A(—z)d(—x) = —A(—x)dz

A1’(z) =
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A spacetranslationT E r on S1 isgivenby

.5 ~4

andin coordinatesby

a; —~ a; + a.

This induces

A~~~ATA(x+a)d(a;+a)=A(z+a)dit

sothat

AT(a;) A(it+a).

In ordertoderive(from this) theactionof ~ on 14 it is usefulto considerA, A”, AT E

A (aselementsoftheprincipalbundle A ) by theircorrespondingexpressionsinagiven
bundle chart. So we have in anobviousnotation(comparewithprevioussubsection)

A(x) : = a + Y’(a;) + k

A”(a;) = —a—Y’(—a;) —k

AT(a;) = a + Y’(a; + a) + k.

From this, takingtheprojectionon M, we obtain

ir(A) = ei2I~~~

ir(A1’) =

ir(AT) = e’2~

andsoobtainfor[A] E14~S1

[A] —* [A]” = [A]
(12)

[A] —~ [A]T = [A].

As wesee, P actson /4 non-trivially and non-freely.Theelements[A] = I and

[A] = —I arefixedpointsofP. T actstriviallyon14.
Thequotientspace 14 = 14/C is given by

= /vt/Z
2 S’/22.
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5. ANOMALIES IN THE AHARONOV-BOHM CASE

5.1. The fermions

The next step in our simple model is the introduction of fermions. As discussedin
subsect. 2.1., fermions are described by sectionsin the tensor bundle F ® B. In the
Aharonov-Bohm casewearestudyinghere,both F and B aretrivial C-line bundles
overSi, andthesameisvalid fortheirtensorproduct. Sothefermionscanbedescribed

by C-valuedfunctionson S1

P:S1—3CØ~ cC=C.

The spaceof femiions isessentiallygivenby C~(S~C). We shouldconsiderthe
Hilbert space H related to the above smooth functions with the appropriate L2 or
Sobolevcompletion. However,since the results do not change, weshall do thecalcu-
lation with the smoothfunctionsand sowe shall avoid thecomplicationsof functional

analysis.Theaction of g on H is given by

‘F -~+g’F and (g”+’)(s) := p(g(s))’l’(s)

where p is a representation of U( I) on C, s E 5’ and g E Q. We shall take for p
thefundamentalrepresentationof U( 1). The action of O on H is given for the parity
transformationP by

and qJP(

5) :=‘y°’P(s
1’)

where ~ = i thegeneratorof the Difford algebraand s1’ is the parity transformed

s E S~.Forthe translationT it is givenby

T T T
‘F—~’F and ‘F (s):=’F(s+a)

where s, a E S~ Theparity actsnon-trivially on thespinorbundle F but trivially on
thefibres of E. On thepreconfigurationspaceH = Ax H, the action S(A,’F) is

givenby

S(A,’F) = ~-(f‘~‘~ PA’F + hc).

This is so becausethe curvaturepart in our problemis zero. In odd dimensions we
have ‘F = ‘P ~. -PA is theDirac operatorwhich is thecovariantderivativeactingon the

section ‘P followed by a Clifford multiplication

PA :=i(d+A) with AEA
0
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PA ~5 c-equivariant

PA.g = P PAP.

This follows immediatelyfrom theabovedefinitionsand from theactionof p on A.

As canbeverified explicitly, S(A,’P) is .ctriciIy invariantunderthe group ~‘. That

meansthatat theclassicallevel thetheorycanimmediatelybereducedto S

5: (Ax H)/c~R.

Ouraim is to studytherelationbetweensymmetryandanomalies.As we haveseen,

thereareno problemsin theclassicalregime. Problemscanoccurwhenwe quantizethe

theory. This will be donenext.

In thequantizedversionof ourtheory,we haveto calculatetheFeynmanpath integral

(sect. 3)

AV~PV’PZ(A,’Y).

The integralover the fermionic degreesof freedomleadsto the detenninationof the
DiracoperatorPA andwe havefor the effective propagatorfunctional, since SA = 0

(seesect. 3)

Z:A~

A H-~ Z(A) = detPA.

Note thatthis Z is c-invariant (equivariant)but not necessarilystrictly invariant.

In orderto calculate det PA we first have to determinethespectrumof the Dirac

operatorand thento chooseandperformtheregularization.In bundlecoordinatesof A,
theDiraeoperatorhasthe form (A+ = i( a±+ Y

1 + k±)d it)

PA±= j(~+ i(a~+ Y’ + k~))

and Y S1 —~ JR and k±E Z, a±C [0, l[. We arc now going to study the
eigcnvalueproblem.This is a local problem. With a := a + k (hencea C F.)

PA’~’fl(it)=

and

+ i(a + Y’(it))’P~(it) =

~‘P,~(it) = ~exp(~ifdit’(~~+

+a + Y’(x))
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Since ‘P~(2 it) = ‘I’~(0) therefollows

2,r
‘F~exp(0) = ‘P~exp (_if da;’(~~+a+Y’(a;’))

= ‘P,~exp(—2iti(~~+a—i(Y(2ir) —Y(0)))

= ~ exp(—2iri~,~+ a))

since Y(2ir) = Y(0). This is only possibleif >~+ a = n C 7L andwe obtainthe

spectrum(Fig. 4a)

{)~}= {—~+ n} = {—a — k + n}

andtheeigenvectors

{‘P~(it) =‘P~exp(-inx—i(Y(it) —Y(0)))InEZ}.

We seethattheeigenvalues{>~}arenot dependingon gaugetransformationsof the

form

Exp(Y) : ~1 ~.U(l)

i.e. transformationsfrom thecomponentof id of the gaugegroup. Gaugetransforma-

tionsof thetype p : .s —~ s~movethewhole spectrumby k units. Thereforethewhole

spectrumis gaugeinvariant.Thegaugeinvarianceof the spectrumfollows immediately

from theequivarianceof PA

=

=~PA(P’P~) =

The spectrum is invariant under gauge transformations. For a C 7 we haveinteger

valued eigenvalues,otherwisethey are real valued. Zero modescanoccur, too. The

spectrumis asymmetric,a featureof theodd-dimensionalityof ourspace. In evendi-
mensionswe would havea symmetricspectrumdue to the Z2 -gradingof the Clifford

algebra(‘y~operator).

5.2. Theregularized determinant

For the calculationof the determinantof the Dirac operator ‘I~A we usethe (—
functionregularizationtechnique[2, 15]. Thestartingpointis thespectrumof theDirac

operatorPA. In ourcaseit is given by

{—~+njnEZ}
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~

I 1~

o o -~

-1

• -2 -2

a) b)

Fig. 4. Spectrum of the Dirac operator on T as a function of a parameter related to the
connectionon T. a) & is the constantpart of the connectionusedin the trivialisation of A.
b) ao isiz modulo integersand is usedin the (-function regularization ofthe determinant.
a~is related to the defectangle a of fig. I.

with a C JR. It containspositiveand negativeeigenvalues.We thereforeusean ex-

tensionof theusual definitionof the determinantvia (- fucntion, which appliesto a
seif-adjointelliptic operatorwith positivesymbol,to correspondingoperatorsbutwith
non-positivesymbol [15]. Forthis purposewe split the abovespectrumin a positive

{)~}and a negative{—~.i~}part(Fig. 4b)

{—a+ ninE Z} = = a0 + n~nCN}

U{—p~=a0—n~EN~}

where a0 = —â + n.,~ for n0 C 7 suchthat a0 E]0, l[. We first excludethevalue

a0 = 0 sinceit correspondsto zeromodesfor whichthedeterminantis notwell defined.
Thisdeterminantis definedby

(13) log det PA := —~ (~8+~(_l)_8~)
s=O ,~o n=1

wheretheregularizationprocedureis in addition implied. It consistsin subtractingthe
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pole at s= 0. With the choiceof aphase(—) = eh1T~andthedefinitions

:= ~~‘+ ~

(14)

74~
we obtain

(15) log det PA = _[((~A(0) + ~ (~o —

(‘ has a pole at s = 0 whereas( and 77 are analytic [15]. For the calculation we use

thegeneralized(-functionof the form

(16) ((3,a0) : ~(n+ a0)
8 a

0 ~0,—1,—2,...

In our example we have defineda0 suchthat

a0 E]0,1[.

Therefore we have no problems with the definition of the generalized(-function.
First wecalculate((~ ~ 0)

~IPAI~
0~= ~ (~(n+ ao)~+ >~(n+a

0Y8) =

(17) = (~(n + ao) + ~( n — a~) — (— I) -sa_a) =

a=O n=o

= (((s,a0) + ((s, —a0) — es~8e_s log 00)

8=0

Weuse ~ ((s,a0) = log F(a0) — flog(2ir) [16]. Accordingto theregulariza-

tion procedure, the pole was substracted(thecut is on therealnegativeaxis). Weobtain

(~AI(0) = log F(a0) + log F(—a0) — log(2ir) — iir+ log a0

= log (F(ao)F(_ao) ~) — iir =

(18) = log ( . _~~)— iir =

a0s,n(ira0) 2ir

= log(—1) — iir—log(2 sin(lra0)) =

= —log(2 sin(ita0)).
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It is easyto seethat (~(0) = 0 whereweused ((0, a0) = — a~in theexpression
in bracketsin (17). Thelast step wehaveto do is to calculate

= (~(n+ a0)~’— ~(n— ao)8) 8=0 =

= (~(n+ a0)
8 — ~(n— a

0)
8 + (_1Y8a~8) 8=0 =

(19) n=0 n=o

= (((s,a
0) —((s—a0)+ (—ao)

8)1
80 =

I I
= ~- — a~— — a~+ I

= —2a0+ I.

Puttingeverythingtogetherweobtain

log det ~=log(
2 sin(lra

0))+ ~(1 —2a0)

and weget

det PA = 1 — e_

2~b00.

Becauseof theasymmetryof the spectrum,our function det is complex valued. We
can now substitute our original parameter a

0 = —â + v0 and we obtainthefinal result

det PA = 1 — e_
2lT~0.

Westill haveto calculatethedeterminantfor a C Z - Wecancontinueourdefinition to

thecasea = 0 with

det PA (a C 7) = 0.

This is an analyticcontinuation.Thisdefinition coincideswith the requirementthat

det PA is zero if PA haszeromodes.If a C 7 then )~C 7 and .\ = 0 occurs.

5.3. The parity anomaly

In theprevioussubsectionwehaveobtainedanexplicit expressionfor thefunction Z.
Sowearenow ableto discussexplicitly thequestionof anomalies.At thispointarecapit-
ulationmay beuseful. We havestartedwith a theorygiven by theaction S(A,‘F), (1),

which was strictly invariantunderthe symmetry group c (S(A~,‘Pt) = S(A, ‘F)
with g C ç, ç/ç ~. Accordingto the G-theory, we canproceedtothe reduction

and we can obtain the equivalent action S( A, ‘F) on thespace(A x H)/ç. This was
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thesituationat the classicallevel. Coming to the quantumlevel, wehaveto dealwith
theeffectivepropagatorZ(A) asgivenafter theintegrationoverthefermionicdegress
of freedomin thepathintegral. It maynow happenthat this Z(A) isno longerstrictly
invariantundertheactionof a subgroupC.

In this casewherethesymmetryis brokenat thequantum level,we speakof f~—

anomaly. It is clear that this is the result of the quantizationprocedureand wehave
to stopherewith thereduction formalism. It is interestingto note that with the above

C-theory pointof view, all possibleanomaliescanbetreatedin a similarway.
In what follows we shall demonstrateexplicitly the aboveconsiderationswith our

model. As we shall see,in our casethe C-anomaly will be the parity anomaly. The
discussionandtheresultsin thesubsections5.1. and 5.2. showthat thereare no gauge

anomaliesinourmodel.Thefunction Z isstrictly c-invariant.This isexpected,in one
dimension,sincetheDiracoperatoris self-adjoinedandthespectrumrealandinvariant.
It is well knownthat thedeterminantof a gaugeinvariantspectrumwhich resultsfrom

(-function regularizationis strictly c-invariant. If we hadstudiedthe caseof even

dimensionsand the caseof chiral fermions(Weyl fermions),the eigenvalueproblem
would havebeendifferent. We would havean eigenvalueproblemformulatedwith a
Laplace-likeoperatorwhich would beneitherself-adjoinednor c-equivariant.

On accountof the strict c-invariance of Z, wecanproceedto the first stepin the
reduction:

~: A AxC

IOTA
Z’: A/~ —* A/cxc.

Z’ isgivenby Z’([A]) := Z(lrA(A)) andwehavewith14 :=A/~~S’,

lrA(A)=[A], [A]=:s

and a theconstantpartof thefunction A( it)

Z’([A]) = 1 — = 1 — [A] = I — s.

Followingthe C-theory program,we areprepared for the second step in thereduc-
tion. Whether this is possibleor not dependson the invariancepropertiesof Z’ under

the group C = ~2 x 81 Since the action of S~on /4 is trivial (4.5), wehaveto
consider only the paritypart ~2

/4 x ~2 ~‘t

(s,—l) s~=s.
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Thetestis whether Z’( [A]”) = Z’( [A]) is direct. From (11) and(12)we have

= Z’(s”) = Z’(~) = I —

since Z’( [A] P) ~ Z’( [A]), Z’ is notstrictly invariantunderthe parity transformation
(although,aswe canimmediatelysee,it is still equivariant).Accordingto ourprevious

discussionwe haveto stopherewith thereduction.ThesubgroupZ2 of a’ is no more
a symmetryat thequantumlevel and we havea parity anomaly.

SUMMARY

The purposeof this paperwas twofold. Firstly we presentedthe extensionof a re-
centlyformulatedmethod (C-theory) to anomaliesand secondlythe treatmentof in-

finite dimensionalobjectsin a simple andphysicallyquite familiar case. lt is a well

knownfactthat anomaliesareconnectedwith theactionof a symmetrygroup,the gauge
group or some otherextensionof it, on infinite dimensionalobjects,as e.g. thespace

of gaugepotential and the spaceof fcrmionic fields are. They indicatethebreakingof

theexistentsymmetryat the quantum level. The applicationof the C-theory concept
to this problem seemsnaturalsince it concernsthe systematicstudyof a theorywith
symmetryinorderto obtainoutof it thereducedeffectivetheory. This hasalreadybeen

appliedwithin theKaluza-Kleinframeworkwherethegroupaction is appliedon a finite
dimensionalspace.

In thepresentpaper,in orderto treatanomalies,we haveextentedtheaboveconcept

to infinite dimensionalobjects. We haveformulatedthe stratificationeffect the group

action is imposingon the spaceof connectionsandwe havepointed Out its importance

for a systematictreatmentof anomalies. In the generalcasewe haveshown how to

dealwith theprincipal stratum. The role singularand exceptionalstrataareplaying is

at presentan openquestionandit is still underinvestigation.Within the framework of

C-theory, anomaliescanbe consideredas obstructionsof the quantizationprocedure

whichwe meetin theprocessof reductiontowardsaneffective theory. This allows the

precisecharacterizationof anomaliesin termsof symmetrypropertiesof thepropagator

functional beforeand after the fermionic degreesof freedomhavebeenintegratedout.

Startingwith astrictly invariant(asexplainedin thetext) propagatorfunctional,we meet

anomaliesif afterthe fermionicintegrationthepropagatorfunctionalceasesto bestrictly

invariant, evenif it still remainsinvariant in a more generalsense.This point of view

includestwo major advantages.Firstly theconnectionof anomalieswith non-trivial

topologicaleffectsis verydirectandplausible,andsecondtya treatmentof all possible
anomalieson thesamefooting becomespossible. It thereforecontributesconsiderably

to ourunderstandingof anomaliesas topologicaleffectsof symmetries.

Theabovetreatmentandmost consideredeffectshavebeendemonstratedon a con-

cretephysicalmodel, theAharonov-Bohmeffect. The related one-dimensionalfield



ANOMALIES FROM THE POINT OF VIEW OF C-THEORY 269

theoryhadinfinite dimensionalstructureswhich were nontrivialbutsimpleenoughthat

everystepcouldbedoneby anexplicit calculation.
It gaveanexamplefor a gaugegroup with a topologicalstructuredependingon the

topologyof the space-timemanifold, the otherdependencebeing thetopologyof the
structuregroup of theprinciplebundleof the gaugetheory.

The stratificationof thespaceof connectionsA undertheactionof thegaugegroup
yields onlyonestratumdueto theabeliannatureof thestructuregroup.

Although A andthegaugegroup were infinite dimensionalobjects,their quotient

wasinfinitedimensionalandhenceeasilytractable.Thesituationwassimilarto thecase
of themoduli spaceswhicharealwaysfinite dimensional:the flat connectionsareindeed

trivially selfdualsince0 = F = F8. But in ourcasethemoduli spacewasthecomplete

configurationspace,not a subspace.
The twist (Gribov ambiguity)of the infinite dimensionalbundle A, theprincipal

orbit bundle,couldbevisualizedby comparingit with theuniversalcoveringbundle R
over S1 - In this stepthe languageof principalfibre bundlesbecameunavoidable.

Thequantizationof the fermionic degreesof freedomcouldbedoneexplicitly with
the (-function regularization.The group actionsof the gaugegroup and otherclassi-

cal symmetrygroupscould bestudiedandhencethe behaviourof thedeterminantline
bundlein the reductionprocessby looking at our determinantas a section.Finally, the

well-known parity anomalyin odd dimensionscouldbestudiedin this framework.The
Aharonov-Bohmsituationservedas a modelto study the abovestructures.
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